Developer's Guide MatrixSSL 1.0

MatrixSSL Developer’s Guide

This document discusses developing with MatrixSSL. It includes instructions on
integrating MatrixSSL into an application and a description of the configurable options
for modifying the MatrixSSL library itself.

Integrating with applications

MatrixSSL isalibrary that provides a security layer to client and server applications
allowing them to securely communicate with other SSL enabled entities. MatrixSSL is
transport agnostic and can just as easily integrate with an HTTP server asit could with a
device communicating through a serial port. For simplicity, this developer’s guide will
assume a socket based implementation for al its examples unless otherwise noted.

The term application in this document refers to the client or server application the
MatrixSSL library is being integrated with.

This document will walk through the specific pointsin which MatrixSSL should be
integrated with an application. MatrixSSL APIs should be integrated into the application
during initialization/cleanup, when new secure connections are being setup (handshaking)
and when encrypting/decrypting messages exchanged with peers.

Refer to the MatrixSSL APl document to get familiar with the interface to the library and
with the example code to see how they are used at implementation. Follow the
guidelines below when using these APIs to integrate MatrixSSL into an application.

1. Initialization
MatrixSSL should beinitialized as part of the application initialization with acall to
matrixSslOpen. This function takes no parameters and sets up the internal structures
needed by thelibrary.

In some cases the application may also call matrixSslReadKeys during its initialization.
In server applications, this function takes the path to the certificate and private key
files. In client applications, this function takes the trusted root certificate to validate
server certificates. In either case, the call extracts the RSA material and returns an
ssiKeys t structure to the application that will be used in a subsequent call to
matrixSslNewSession. matrixSslReadKeys parses through an entire PEM certificate file
soitisarather CPU intensivetask. This needsto be taken into consideration to
determine the most logical place for your application to read in its keys. It can be
called asingle time at start up to keep the keysin memory for the life of the application.
Thisis most useful if the application uses the same certificate file for each connection.
Or it can be called once for each secure connection and freed immediately after the
connection is closed. This should be doneif the application has multiple certificate
files depending on the identity of the connecting entity or if there is a security concern
with keeping the RSA keysin memory for extended periods of time. This API can aso
be used to read a set of keys for each virtual server, and reused for sessions within that
virtual server in Apache like environments.

Page 1 of 10 Copyright ©2002-2004 PeerSec Networks, LLC

Developer's Guide MatrixSSL 1.0

Once the application is done with the keys they are freed with acall to
matrixSsl FreeKeys.

2. Creating a Session
The next MatrixSSL integration point in the application is to identify when anew
session is starting. In the case of aclient, thisis whenever it chooses to begin one since
only client initiated sessions are supported in MatrixSSL. In the case of a server, anew
session should be started when the server accepts a connection from aclient. Ina
socket based application, this would typically happen when the accept socket call
returns. The application sets up a new session with the APl matrixSsiINewSession. The
returned ssl_t value will become the input parameter for most of the remaining APIs
that act at asession level.

The required input parameters to matrixSslNewSession are the key structure from the
previous call to matrixSslReadKeys and the flag SS._FLAGS SERVER or O (for a
client session). For client cases, there is an optional sessonld parameter that identifies a
previously open session to resume asession. A session id can be retrieved from acall
to matrixSsl GetSessionld once a session has been negotiated and before it is deleted.
The session id parameter must always be NULL for server implementations.

A fina client consideration at this point of integration is whether or not to register a
certificate validation callback function with the matrixSsl SetCertValidator API. This
routine takes the SSL session and a function pointer as arguments. The registered
function will be invoked during the portion of the handshake processin which the
server’ s certificate is being verified. This API should be used when the MatrixSSL
default certificate validation is not deemed sufficient or if the client application would
like to expose the certificate information to the user for any reason.

3. Handshaking
With the session established a client initiates a handshake by first constructing the
CLIENT_HELLO message with acall to matrixSslEncodeClientHello. The client
sends the constructed data to the server. When the server receives notice that aclient is
reguesting a secure communication session and the function matrixSslNewSession has
been called to create a new session structure the application can then read in the client
message data. All incoming messages should be passed to matrixSslDecode which then
processes the message and drives the handshake through the built-in SSLv3 state
machine. The parameters to matrixSslDecode include the SSL structure returned from
the call to matrixSsiNewSession, input and output buffers, and alert and error output
parameters. Refer to the APl documentation for more details.

The matrixSslDecode API is apowerful function that processes handshake messages

for clients and servers as well as decoding application data. Its return code tells the
application what the message was and how it is to be handled.

Page 2 of 10 Copyright ©2002-2004 PeerSec Networks, LLC

Developer's Guide

MatrixSSL 1.0

The steps below outline the proper usage of matrixSslDecode on the server side when
handshaking. A sockets based implementation is assumed in these steps.

1. The applications reads the client data off the socket with recv

2. matrixSslDecode is called with the client data

3. Thereturn value from matrixSslDecode is tested to see what action the
application is required to do with the output buffer. Thelist of possible return
values and appropriate action include:

a

Page 3 of 10

SSL_SEND_RESPONSE - This value indicates the message was part
of the SSLv3 standard and areply is expected. The application should
send the output buffer to the client with send and then call
matrixSslDecode again to see if any more message data needs to be
decoded.

SSL_ERROR — This value indicates there has been an error while
attempting to decode the data or that a bad message was sent. The
application should attempt to send the out buffer to the client as areply
and then close the socket.

SSL_ALERT — This value indicates the message was an aert sent
from the client and the application should close the socket.
SSL_PARTIAL — Thisvaueindicates that the input buffer was an
incomplete message or record (or no dataat al to parse). If the
handshake is incomplete (! matrixSsl Handshakel sComplete()), the
application must retrieve more data from the socket with recv and call
matrixSsl Decode with then entire record. If the handshakeis
complete, the caller can decide whether more datais expected at this
point or not.

SSL_FULL —This value indicates the output buffer was too small to
hold the output message. The application should grow the output
buffer and call matrixSslDecode again with the same input buffer. The
maximum size of the buffer output buffer will never exceed 16K per
the SSLv3 standard.

SSL_PROCESS DATA —Thisvaueindicates that the messageis
application specific data that does not require aresponse from the
server. Thismessageisan implicit indication that SSLv3 handshaking
iscomplete. The decoded data has been written to the output buffer
for application consumption.

SSL_SUCCESS - A handshake message was successfully decoded and
handled. No additional action is required for this message.
matrixSslDecode can be called again immediately if more datais
expected. Thisreturn code gives visibility into the handshake process
and can be used in conjunction with matrixSslHandshakel sComplete to
determine when the handshake is complete and application data can be
sent.

Copyright ©2002-2004 PeerSec Networks, LLC

Developer's Guide MatrixSSL 1.0

The client steps are identical to the server steps above except the processis
started with a call to matrixSslNewSession and matrixSslEncodeClientHello to
construct the first message to be sent to the server.

4, Communicating With Peers
Once the handshake is complete the application will ssmply wrap al incoming and
outgoing messages with matrixSslDecode and matrixSslEncode, respectively.

5. Ending a session
When the application receives notice that the session is complete or has determined
itself that the session is complete, it should notify the other side, close the socket and
delete the MatrixSSL session. Thisis done by calling matrixSsl EncodeClosureAlert
and matrixSslDeleteSession.

A call to matrixSslEncodeClosureAlert is an optional step that will encode an alert
message to pass along to the other side to inform them to close the session cleanly.

On agraceful closure, a client application may wish to store aside the session id
information before ending a session, to alow fast resumption of the next session to the
same SSL server. It can do thiswith a call to matrixSslGetSessionld before calling
matrixSslDeleteSession. Future negotiations with the same server can be quickly
resumed by passing that session id to matrixSslNewSession.

6. Closingthelibrary
At application exit the MatrixSSL library should be un-initialized with a call to
matrixSslClose. If the application has called matrixSslReadKeys as part of the
initialization process and kept its keysin memory it should call matrixSslFreeKeys
before calling matrixSslClose. Additionally, if the client application has called
matrixSsl GetSessionld to support session resumption, it should call
matrixSslFreeSessionld before calling matrixSslClose.

Working implementations of MatrixSSL integration can be seen in the examples
subdirectory of the distribution package. A server source code exampleis availablein
the httpsReflector example application. A client source code example is availablein the
httpsClient example application.

Porting to Other Platforms

OS Dependent Code Layer
The code under matrixssl/src/os may need to be modified when porting to new platforms.

Build Environment Details

The supplied build environments allow the creation of a MatrixSSL shared object (DLL
on Windows) library for each supported operating system. Detailsfor Windows and

Page 4 of 10 Copyright ©2002-2004 PeerSec Networks, LLC

Developer's Guide MatrixSSL 1.0

Linux builds are provided in this section. Use these examples as a guide for building on
other platforms and make systems.

Windows Builds

The MatrixSSL package is distributed with Visual Studio .NET project files for use with
Windows systems. If you are working with an earlier version of Visua Studio, the
information in this section should be sufficient to create a MatrixSSL project.

Compiler and linker settings
Use the default compiler and linker settings for Debug and Rel ease targets

Additional Debug defines
WIN32; WIN32_WINNT=0x0500; DEBUG; DEBUG

Additional Release defines
WIN32; WIN32_WINNT=0x0500

Run-time library
Multi-threaded DLL (use Debug version for debug builds)

Linux Builds

The MatrixSSL package is distributed with Makefile files for building on Linux systems.
These Makefiles can be used as templates for make systems on other platforms.

Debug defines
-DLINUX -DDEBUG

Release defines
-DLINUX

Debug compile options
-0

Rel ease compil e options
-03

Extending MatrixSSL

This section of the devel opers guide explains more of the internals of MatrixSSL and
how to extend its functionality.

Compile-Time Defines

A lot of the functionality of MatrixSSL has been encapsul ated with compile-time
definitions in the matrixConfig.h header file. Reducing the number of supported features
is an effective way of reducing the compiled library size. Descriptions for these options
can be found in the following list:

Page 5 of 10 Copyright ©2002-2004 PeerSec Networks, LLC

Developer's Guide MatrixSSL 1.0

USE_SERVER_SIDE_SSL

On by default, this define enables server specific code to be compiled into the library.
Thereisasmall subset of public APIsthat are only availableto client side
implementations. It is generally not advisable to disable server or client support in
the MatrixSSL library unless the few Kb of savingsisimportant to the project.

USE_CLIENT_SIDE_SSL

On by default, this define enables client specific code to be compiled into the library.
Thereisasmall subset of public APIsthat are only availableto client side
implementations. It is generally not advisable to disable server or client support in
the MatrixSSL library unless the few Kb of savingsisimportant to the project.

USE SSL_ RSA WITH_RC4 128 MD5

On by default, this define controls the inclusion of the cipher suite consisting of RSA
public key encryption, 128 bit ARC4 symmetric encryption, and MD5 message
authentication codes. Thisisthe weakest cipher suite supported, and is marginally
faster than the others.

USE_SSL_RSA_WITH_RC4 128 SHA

On by default, this define controls the inclusion of the cipher suite consisting of RSA
public key encryption, 128 bit ARC4 symmetric encryption, and SHA1 message
authentication codes. This ciphersuite is a good balance of speed and security for
embedded devices.

USE_SSIL RSA WITH_3DES EDE_CBC_SHA

Off by default, this define controls the inclusion of the cipher suite consisting of RSA
public key encryption, 128 bit 3DES symmetric encryption, and SHA1 message
authentication codes. Thisisthe strongest cipher suite in terms of security, but also
the most CPU intensive.

USE_ENCRYPTED_PRIVATE_KEYS

On by defaullt, this define controls whether or not to support the reading of 3DES
encrypted (password protected) private key files passed to matrixSslReadKeys.
Embedded MatrixSSL installations usually will not have an operator available to
enter a password, so private keys are stored unencrypted on the device, and this
option can be disabled to dlightly reduce code size.

USE_MULTITHREADING

On by default, this define controls whether or not to use multithread mutex support in
the operating system layer. This option can be enabled whether or not the library is
used in amultithreaded application. It does not mean that MatrixSSL will generate
any threads, it only provides additional concurrency control for environments that
may have multiple SSL sessionsin use simultaneously. This can be disabled in
environments with no threading APIs defined in the MatrixSSL OS layer.

Page 6 of 10 Copyright ©2002-2004 PeerSec Networks, LLC

Developer's Guide MatrixSSL 1.0

USE_PEERSEC_MALLOC
Off by default, this define controls whether or not to use the PeerSec memory
routines for basic memory statistics. Should be turned off for release builds.

USE FILE _SYSTEM

On by default, this define controls whether or not to include public API functions that
make use of operating system calls that accessfiles. The matrixSslReadKeys API is
currently the only library function to use such system calls. A buffer only version of
this API (matrixSslReadKeysMem) isincluded in the library.

Cipher Suites

MatrixSSL uses the term cipher suite to describe a collection of function callbacks and
key size specifications used to determine which algorithms are used for symmetric and
public key encryption/decryption and how MAC generation and verifications are handled
for asession. The following section explains how each element of a cipher suiteis
implemented.

1. Defining acipher suite

Thelist of available default cipher suites are found in the supportedCiphers static
structure in the file cipher Suite.c. This structure defines all available cipher suites
along with arequired NULL suite asthe last entry. The definition of the
sslCipher Soec t structureis as follows:

typedef struct {

unsi gned int id; /1 unique identifier

unsi gned char macSi ze; // MAC di gest size (bytes)

unsi gned char keySize; /] symretric key length (bytes)
unsi gned char ivSize; // symetric block cipher iv size
unsi gned char bl ockSi ze; // symmetric block cipher size

/1l set to 1 for stream cipher
/11nit function
int (*init)(sslSec_t *sec);
/1 Ci pher functions
int (*encrypt)(ssl Ci pherContext t *ctx, char *in,
char *out, int len); // symetric encryption
int (*decrypt) (ssl G pherContext_t *ctx, char *in,
char *out, int len); // symetric decryption
int (*encryptPub) (ssl RsaKey t *key, char *in, int inlen,
char *out, int outlen); // public key encryption
int (*decryptPriv)(ssl RsaKey_t *key, char *in, int inlen
char *out, int outlen); // private key decryption
int (*generateMac) (ssl Sec_t *sec, unsigned char type,
char *data, int len, char *mac);
int (*verifyMac)(ssl Sec_t *sec, unsigned char type,
char *data, int len, char *mac);
} ssl Ci pher Spec_t;

A cipher suite entry should be defined in the supportedCiphers structure between
a custom define that has been added to the matrixConfig.h file. Any number of
cipher suites can be compiled into the library. The SSL handshake protocol will

Page 7 of 10 Copyright ©2002-2004 PeerSec Networks, LLC

Developer's Guide MatrixSSL 1.0

negotiate the proper cipher at connection time. For reference, see the built-in
supported cipher suites in the configuration header file:

USE_SSL_RSA WITH_RC4 128 MD5
USE_SSL_RSA_WITH_RC4 128 SHA
USE_SSL_RSA_WITH_3DES EDE_CBC_SHA

2. Symmetric Encryption

The symmetric encryption and decryption functions are identified in the encrypt
and decrypt members of the sslCipher Spec t structure. To add support for a new
symmetric cipher context, locate the sslCipher Context_t structure definition in the
header file of the chosen crypto provider and add the cipher context necessary to
support the new method. For reference, see the PeerSec implementation in the
header file pscrypto.h.

In addition to the callbacks, the values for keySize, ivSize, and blockSze all relate
to symmetric encryption and should be set appropriately. The keySze member is
the desired strength of the symmetric key in bytes. TheivSzeisan optional
length of an initialization vector if the chosen cipher requires one. The blockSze
member should be specified if ablock cipher isbeing used. If astream cipheris
used, set thisvalueto 1.

3. Public Key Encryption

Public key encryption and decryption functions are identified in the encryptPub
and decryptPriv members of the ssICipher Spec _t structure. In genera, these
callbacks are the least configurable members of a cipher suite. RSA isthe
standard in public key encryption and is assumed in the current MatrixSSL
encryption layers. The value for encryptPub must be matrixRsaEncryptPub and
the value for decryptPriv must be matrixRsaDecryptPriv. The implementation of
these two functions will be implemented by a crypto provider.

4. MAC Generation and Verification

The message authentication code cipher is selected through the generateMac and
verifyMac members of the sslCipher Spec t structure. The MAC implementation
is used during the handshake portion of negotiating a secure connection and is
part of the SSLv3 specification. For this reason, it should not be necessary to
replace the existing MatrixSSL MAC ciphers. For MD5 MACs, choose
md5GenerateMac and md5VerifyMac, respectively. For SHA1 MACs, choose
shalGenerateMac and shalVerifyMac.

Crypto Providers

MatrixSSL uses the term crypto provider to refer to the specific implementation of a
cryptographic algorithm. In general, a crypto provider will implement an entire cipher
suite, but it is possible that several crypto providers can contribute to a cipher suite. This
allows the most appropriate version of a specific algorithm to be implemented for your
application. The default crypto provider can be found in the MatrixSSL source code

Page 8 of 10 Copyright ©2002-2004 PeerSec Networks, LLC

Developer's Guide MatrixSSL 1.0

distribution in the src/crypto subdirectory. The set of functions a crypto provider must
implement for the supplied cipher suites are prototyped in cryptoLayer.h. The following
list provides details for each:

ARC4
matrixArc4lnit(sslCipherContext_t * ctx, unsigned char *key, int keylen);
matrixArc4(ssl CipherContext_t *ctx, char *in, char *out, int len);

3DES
matrix3deslinit(sslCipherContext_t * ctx, const unsigned char *1V,

const unsigned char *key, int keylen);
matrix3desEncrypt(ssl CipherContext_t *ctx, char *in, char *out, int len);
matrix3desDecrypt(ss CipherContext_t * ctx, char *in, char *out, int len);

MD5

matrixMd>SInit(sssMd5Context_t * ctx);

matrixMd5Update(ssiMd5Context_t * ctx, const unsigned char * buf,
unsigned long len);

matrixM d5Final (sssMd5Context_t * ctx, unsigned char * hash);

SHA1

matrixShallnit(sslShalContext_t * ctx);

matrixShalUpdate(ssl ShalContext_t *ctx, const unsigned char * buf,
unsigned long len);

matrixShalFinal (sslShalContext_t *ctx, unsigned char * hash);

RSA

matrixRsaReadCert(char *fileName, unsigned char **out, int * outLen);
matrixRsaReadPrivK ey(char *fileName, char * password, ssiRsaKey t **key);
matrixRsaFreeK ey(ssiRsaK ey _t *key);

matrixRsaEncryptPub(ssiRsaKey _t *key, char *in, int ilen, char *out, int outlen);
matrixRsaDecryptPriv(ssiIRsaKey t *key, char *in, int ilen, char *out, int outlen);

X509 certificates
matrixX 509ParseCert(unsigned char ** certBuf, int certlen, ssRsaCert_t ** cert);
matrixX509FreeCert(ssiRsaCert_t * cert);
matrixX 509V alidateCert(ssiRsaCert_t * subjectCert, ssRsaCert_t *issuerCert);
matrixX509UserValidator(ssiRsaCert_t * subjectCert,

int (*certValidator)(sslCertInfo_t *t));

Debugging
MatrixSSL provides the following debug functionality in matrixConfig.h:

sd Assert(C);

Page 9 of 10 Copyright ©2002-2004 PeerSec Networks, LLC

Developer's Guide MatrixSSL 1.0

sslAssert is amacro defined in matrixConfig.h that allows a developer to test if acertain
condition istrue. In debug builds thiswill output a message containing the condition
tested, the file name, and line number to stderr then calls ssIBreak to stop the process. In
release builds this simply outputs the message to stderr without breaking the process.

void ssIBreak();
ssIBreak allows a devel oper to stop the process and break into a debugger when an assert
triggers. Itiscalled by ssAssert in DEBUG builds.

void matrixStrDebugM sg(char * message, char *arg);

matrixStrDebugM sg is defined in matrixSsl.c and allows a developer to output a debug
message to stdout with a single string argument (may be NULL). Inrelease builds this
function is compiled out.

void matrixIntDebugM sg(char * message, int arg);

matrixIntDebugMsg is defined in matrixSsl.c and allows a devel oper to output a debug
message to stdout with a single integer argument. In release builds this functionis
compiled out.

Page 10 of 10 Copyright ©2002-2004 PeerSec Networks, LLC

